Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 844
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732138

D-bifunctional protein deficiency (D-BPD) is a rare, autosomal recessive peroxisomal disorder that affects the breakdown of long-chain fatty acids. Patients with D-BPD typically present during the neonatal period with hypotonia, seizures, and facial dysmorphism, followed by severe developmental delay and early mortality. While some patients have survived past two years of age, the detectable enzyme activity in these rare cases was likely a contributing factor. We report a D-BPD case and comment on challenges faced in diagnosis based on a narrative literature review. An overview of Romania's first patient diagnosed with D-BPD is provided, including clinical presentation, imaging, biochemical, molecular data, and clinical course. Establishing a diagnosis can be challenging, as the clinical picture is often incomplete or similar to many other conditions. Our patient was diagnosed with type I D-BPD based on whole-exome sequencing (WES) results revealing a pathogenic frameshift variant of the HSD17B4 gene, c788del, p(Pro263GInfs*2), previously identified in another D-BPD patient. WES also identified a variant of the SUOX gene with unclear significance. We advocate for using molecular diagnosis in critically ill newborns and infants to improve care, reduce healthcare costs, and allow for familial counseling.


Mitochondrial Trifunctional Protein/deficiency , Peroxisomal Multifunctional Protein-2 , Humans , Peroxisomal Multifunctional Protein-2/deficiency , Peroxisomal Multifunctional Protein-2/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Infant, Newborn , Infant , Male , Female , Exome Sequencing , Frameshift Mutation , 17-Hydroxysteroid Dehydrogenases/deficiency , 17-Hydroxysteroid Dehydrogenases/genetics , Resource-Limited Settings , Mitochondrial Myopathies , Cardiomyopathies , Nervous System Diseases , Rhabdomyolysis
2.
Cardiovasc Pathol ; 70: 107630, 2024.
Article En | MEDLINE | ID: mdl-38490313

A female neonate born with normal Apgar scores at 38+2 weeks of gestational age unexpectedly passed away within less than 30 hours after birth. The situation mirrored her brother's earlier demise within 24 hours post-delivery, suggesting a possible genetic disorder. Gross examination revealed widespread cyanosis and distinct yellowish changes on the cardiac ventricles. Histopathological examination disclosed lipid accumulation in the liver, heart, and kidneys. Tandem mass spectrometry detected elevated levels of 10 amino acids and 14 carnitines in cardiac blood. Trio-whole genome sequencing (Trio-WGS) identified the SLC25A20 c.199-10T>G mutation associated with carnitine-acylcarnitine translocase disease (CACTD), a type of fatty acid oxidation disorders (FAODs) with a potential for sudden death. Further validation of gene expression confirmed the functional deficiency of SLC25A20, ultimately diagnosing CACTD as the underlying cause of the neonate's demise. This case highlights the importance of prenatal metabolic and genetic screening for prospective parents and emphasizes the need for forensic doctors to integrate metabolomic and genomic investigations into autopsies for suspected inherited metabolic diseases.


Carnitine Acyltransferases , Lipid Metabolism, Inborn Errors , Mutation , Humans , Infant, Newborn , Female , Carnitine Acyltransferases/deficiency , Carnitine Acyltransferases/genetics , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/diagnosis , Phenotype , Fatal Outcome , Genetic Predisposition to Disease , Sudden Infant Death/genetics , Sudden Infant Death/pathology , Sudden Infant Death/etiology , Autopsy , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , Cause of Death , Carnitine/analogs & derivatives , Carnitine/deficiency , Mitochondrial Membrane Transport Proteins/genetics , Myocardium/pathology , Myocardium/metabolism , Membrane Transport Proteins
3.
Eur J Paediatr Neurol ; 49: 60-65, 2024 Mar.
Article En | MEDLINE | ID: mdl-38377647

Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.


Acyl-CoA Dehydrogenase/deficiency , Cardiomyopathies , Carnitine O-Palmitoyltransferase/deficiency , Lipid Metabolism, Inborn Errors , Metabolism, Inborn Errors , Mitochondrial Trifunctional Protein/deficiency , Neonatal Screening , Rhabdomyolysis , Humans , Infant, Newborn , Retrospective Studies , Male , Female , Neonatal Screening/methods , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/complications , Belgium/epidemiology , Infant , Congenital Bone Marrow Failure Syndromes/complications , Congenital Bone Marrow Failure Syndromes/diagnosis , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Fatty Acids/metabolism , Child, Preschool , Muscular Diseases/diagnosis , Child , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/complications , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/complications , Nervous System Diseases/etiology , Nervous System Diseases/diagnosis
4.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338819

Sitosterolemia is a rare genetic lipid disorder characterized by elevated plant sterols in the serum. A 24-year-old Japanese woman was referred to our hospital due to a high serum low-density lipoprotein cholesterol (LDL-C) level of 332 mg/dL. At first, she was suspected to suffer from familial hypercholesterolemia, and thus received lipid-lowering agents. Although her LDL-C level remained high (220 mg/dL) with diet therapy plus 10 mg/day rosuvastatin, it was drastically decreased to 46 mg/dL with the addition of 10 mg/day ezetimibe. Finally, her LDL-C level was well-controlled at about 70 mg/dL with 10 mg/day ezetimibe alone. Furthermore, while her serum sitosterol level was elevated at 10.5 µg/mL during the first visit to our hospital, it decreased to 3.6 µg/mL with the 10 mg/day ezetimibe treatment alone. These observations suggest that she might probably suffer from sitosterolemia. Therefore, targeted gene sequencing analysis was performed using custom panels focusing on the exome regions of 21 lipid-associated genes, including ABCG5, ABCG8, and familial hypercholesterolemia-causing genes (LDL receptor, LDLRAP1, PCSK9, and apolipoprotein B). We finally identified a heterozygous ABCG8 variant (NM_022437.2:c.1285A>G or NP_071882.1:p.Met429Val) in our patient. The same gene mutation was detected in her mother. We report here a rare case exhibiting probable sitosterolemia caused by a heterozygous Met429Val variant in the ABCG8 gene and additional unknown variants.


Hypercholesterolemia , Hyperlipoproteinemia Type II , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Phytosterols/adverse effects , Humans , Female , Young Adult , Adult , Proprotein Convertase 9 , Cholesterol, LDL , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Phytosterols/genetics , Ezetimibe/therapeutic use , Hyperlipoproteinemia Type II/genetics
5.
Ann Clin Transl Neurol ; 11(4): 883-898, 2024 Apr.
Article En | MEDLINE | ID: mdl-38263760

OBJECTIVE: This study aims to elucidate the long-term benefit of newborn screening (NBS) for individuals with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiency, inherited metabolic diseases included in NBS programs worldwide. METHODS: German national multicenter study of individuals with confirmed LCHAD/MTP deficiency identified by NBS between 1999 and 2020 or selective metabolic screening. Analyses focused on NBS results, confirmatory diagnostics, and long-term clinical outcomes. RESULTS: Sixty-seven individuals with LCHAD/MTP deficiency were included in the study, thereof 54 identified by NBS. All screened individuals with LCHAD deficiency survived, but four with MTP deficiency (14.8%) died during the study period. Despite NBS and early treatment neonatal decompensations (28%), symptomatic disease course (94%), later metabolic decompensations (80%), cardiomyopathy (28%), myopathy (82%), hepatopathy (32%), retinopathy (17%), and/or neuropathy (22%) occurred. Hospitalization rates were high (up to a mean of 2.4 times/year). Disease courses in screened individuals with LCHAD and MTP deficiency were similar except for neuropathy, occurring earlier in individuals with MTP deficiency (median 3.9 vs. 11.4 years; p = 0.0447). Achievement of dietary goals decreased with age, from 75% in the first year of life to 12% at age 10, and consensus group recommendations on dietary management were often not achieved. INTERPRETATION: While NBS and early treatment result in improved (neonatal) survival, they cannot reliably prevent long-term morbidity in screened individuals with LCHAD/MTP deficiency, highlighting the urgent need of better therapeutic strategies and the development of disease course-altering treatment.


Cardiomyopathies , Lipid Metabolism, Inborn Errors , Mitochondrial Myopathies , Mitochondrial Trifunctional Protein , Nervous System Diseases , Rhabdomyolysis , Humans , Infant, Newborn , Fatty Acids/metabolism , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/therapy , Lipid Metabolism, Inborn Errors/metabolism , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase/metabolism , Mitochondrial Trifunctional Protein/metabolism , Mitochondrial Trifunctional Protein/deficiency , Infant , Child, Preschool , Child
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 59-66, 2024 Jan 10.
Article Zh | MEDLINE | ID: mdl-38171561

OBJECTIVE: To explore the correlation between clinical classification and genotype and prognosis among Chinese children with Very-long chain acyl-CoA dehydrogenase deficiency (VLCADD). METHODS: A Chinese pedigree affected with VLCADD admitted at the First People's Hospital of Yunnan Province in February 2019 was selected as the study subject. The characteristics of disease onset, diagnosis and treatment and prognosis were retrospectively analyzed. Relevant literature was also systematically searched and reviewed. RESULTS: The proband, a 1-year-old boy, had the clinical manifestations of frequently vomiting, hypoglycemia, abnormal liver function and myocardial enzymes. Tandem mass spectrometry screening showed significantly elevated C14, C14:1, C16:1, C16:2, C18 and C14/C8. Genetic testing revealed that he has harbored compound heterozygous variants of the ACADVL gene, namely c.664G>A (p.G222R) and c.1345G>A (p.E449K), which were respectively derived from his father and mother. The child was diagnosed with VLCADD cardiomyopathy type and deceased 2 weeks later. Literature review has identified 60 Chinese children with VLCADD. The clinical classifications were mainly cardiomyopathy type and liver disease type, which accounted for 73.3% (43/60). The combination of ACADVL gene variants were correlated with the clinical classifications of VLCAD. Children with one or two loss-of-function (LOF) mutations showed more severe clinical manifestation and a higher mortality. Cardiomyopathy type had the poorest prognosis, with a mortality rate of 76.9% (20/26). C14:1 may be used as an indicator for the diagnosis of VLCADD, but cannot be used for clinical subtyping and prognosis evaluation. The c.1349G>A (p.R450H) variant had the highest frequency among the Chinese patients, accounting for 10.8% (13/120). CONCLUSION: The clinical classifications of VLCADD are strongly correlated with the prognosis, and LOF mutations are more common in those with severe clinical manifestations. c.1349G>A (p.R450H) may be the most common variant among the Chinese patients, and early screening and diagnosis can greatly improve the prognosis of patients.


Cardiomyopathies , Lipid Metabolism, Inborn Errors , Mitochondrial Diseases , Muscular Diseases , Child , Humans , Infant , Male , Cardiomyopathies/genetics , China , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Mitochondrial Diseases/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Pedigree , Retrospective Studies
7.
Neuromuscul Disord ; 35: 19-24, 2024 Feb.
Article En | MEDLINE | ID: mdl-38194732

The rare disorder known as Neutral Lipid Storage Disease with Myopathy presents with a variety of clinical manifestations, including myopathy, cardiac dysfunction, and other organ complications. Early diagnosis is crucial due to the increased risk of cardiomyopathy. We describe the clinical, histopathological, muscle imaging, and genetic findings of nine neutral lipid storage myopathy patients. Proximal weakness and asymmetric involvement may suggest lipid storage myopathy. While skeletal muscle weakness was the main manifestation in our patients, one case presented only with hyperCKemia. Additionally, three patients had fertility issues, two suffered from diabetes mellitus, two had cardiomyopathy, and one had a history of hypothyroidism. Muscle histopathology revealed lipid depositions and rimmed vacuoles, prompting peripheral blood smears to detect Jordan Anomalies. All muscle biopsies and peripheral blood smear showed lipid droplets, rimmed vacuoles, and Jordan anomaly. Identifying PNPLA2 gene mutations is important for diagnosing neutral lipid storage myopathy; our cases showed some novel mutations. This study highlights the importance of early diagnosis and comprehensive evaluation in managing neutral lipid storage myopathy cases.


Cardiomyopathies , Ichthyosiform Erythroderma, Congenital , Lipid Metabolism, Inborn Errors , Muscular Diseases , Humans , Iran , Muscle, Skeletal/pathology , Lipase/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/pathology , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Mutation
8.
J Clin Lipidol ; 18(1): e125-e128, 2024.
Article En | MEDLINE | ID: mdl-37968200

Chanarin-Dorfman Syndrome (CDS) is a rare lipid storage disease with ichthyosis, hepatomegaly, myopathy, neuropathy, deafness, and ocular findings. Here, we aim to present an elderly CDS case and highlight the new endocrinological findings. A 66-year-old male patient with cirrhosis was hospitalized for liver transplantation. We suspected Chanarin-Dorfman Syndrome with ichthyosis, fatty liver, and syndromic facial features with bilateral ectropion, deafness, and malocclusion. We showed the lipid droplets in neutrophils called patognomonic Jordans' anomaly. Homozygous c.47+1 G>A mutation in the ABHD5 (NM_016006.6) gene were detected by clinical exome sequencing. Out of <160 CDS cases in the literature, this is the second eldest CDS patient and first with adrenal insufficiency, parathyroid lipoadenoma and atrophic pancreas. Clinicians should be aware of CDS as a rare cause of fatty liver. We recommend a blood smear and genetic analyses in patients with severe ichtiosis, ectropion, deafness and multiple endocrinolgic disorders.


Deafness , Ectropion , Fatty Liver , Ichthyosiform Erythroderma, Congenital , Ichthyosis , Lipid Metabolism, Inborn Errors , Liver Transplantation , Muscular Diseases , Male , Humans , Aged , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Fatty Liver/diagnosis , Fatty Liver/genetics , Lipids , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
9.
Rinsho Shinkeigaku ; 63(10): 656-660, 2023 Oct 25.
Article Ja | MEDLINE | ID: mdl-37779023

A 25-year-old Japanese woman with a history of repeated episodes of rhabdomyolysis since the age of 12 presented with rhabdomyolysis caused by hyperemesis gravidarum. Blood tests showed an elevated serum CK level (11,755 |IU/l; normal: 30-180 |IU/l). Carnitine fractionation analysis revealed low levels of total carnitine (18.3 |µmol/l; normal: 45-91 |µmol/l), free carnitine (13.1 |µmol/l; normal: 36-74 |µmol/l), and acylcarnitine (5.2 |µmol/l; normal: 6-23 |µmol/l). Tandem mass spectrometry showed high levels of C14:1 acylcarnitine (0.84 |nmol/ml: normal: <0.4 |nmol/ml) and a high C14:1/C2 ratio of 0.253 (normal: <0.013), indicating a potential diagnosis of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. Enzyme activity measurement in the patient's peripheral blood lymphocytes confirmed the diagnosis of VLCAD deficiency, with low palmitoyl-CoA dehydrogenase levels (6.5% of normal control value). With the patient's informed consent, acyl-CoA dehydrogenase very long-chain (ACADVL) gene analysis revealed compound heterozygous mutations of c.1332G>A in exon 13 and c.1349G>A (p.R450H) in exon 14. In Japan, neonatal mass screening is performed to detect congenital metabolic diseases. With the introduction of tandem mass screening in 2014, fatty acid metabolism disorders, including VLCAD deficiency, are being detected before the onset of symptoms. However, it is important to note that mass screening cannot detect all cases of this disease. For patients with recurrent rhabdomyolysis, it is essential to consider congenital diseases, including fatty acid metabolism disorders, as a potential diagnosis.


Hyperemesis Gravidarum , Lipid Metabolism, Inborn Errors , Rhabdomyolysis , Infant, Newborn , Female , Pregnancy , Humans , Adult , Hyperemesis Gravidarum/complications , Hyperemesis Gravidarum/diagnosis , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Rhabdomyolysis/diagnosis , Rhabdomyolysis/etiology , Carnitine , Fatty Acids
10.
Neuromuscul Disord ; 33(9): 81-89, 2023 09.
Article En | MEDLINE | ID: mdl-37620213

Neutral lipid-storage disease with myopathy (NLSDM) is an autosomal recessive neuromuscular disorder caused by mutations in PNPLA2, and the average age at onset is 30 years. To date, only eight patients with childhood-onset NLSDM have been reported in detail. We investigated 3 unreported patients with NLSDM detected in childhood and reviewed 8 childhood-onset and 82 adult-onset patients with NLSDM documented in the literature. In the childhood-onset cohort, NLSDM presented initially as asymptomatic or paucisymptomatic hyperCKemia in 6/11 patients, and follow-up data showed onset of muscle weakness in 6/11 childhood-onset patients. In the adult-onset cohort, 95.1% (78/82) of patients showed muscle weakness. Cardiac involvement developed in 6/11 childhood-onset patients. Hepatomegaly was observed in 3/11 childhood-onset patients. Serum creatine kinase levels were elevated greater than five-fold of the upper limit of normal (ULN) in most childhood-onset patients and were elevated to less than ten-fold of the ULN in most adult-onset patients. Peripheral blood smears and muscle biopsies showed cytoplasmic lipid droplets in leukocytes and myocytes. NLSDM can present in children with asymptomatic or paucisymptomatic hyperCKemia before the onset of muscle weakness. The presence of lipid droplets in leucocytes (Jordans' anomaly) aids in diagnosing and confirming the pathogenicity of PNPLA2 variants of uncertain significance. There were no clear genotype-phenotype correlations in patients with NLSDM.


Lipid Metabolism, Inborn Errors , Muscular Diseases , Adult , Child , Humans , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscle Weakness , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics
11.
Mol Genet Metab ; 140(3): 107668, 2023 11.
Article En | MEDLINE | ID: mdl-37549443

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.


Lipid Metabolism, Inborn Errors , Mitochondrial Diseases , Muscular Diseases , Humans , Infant, Newborn , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Congenital Bone Marrow Failure Syndromes/genetics , Genetic Testing , Genetic Variation , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Mitochondrial Diseases/genetics , Muscular Diseases/genetics
12.
J Inherit Metab Dis ; 46(5): 848-873, 2023 09.
Article En | MEDLINE | ID: mdl-37530674

Since the identification of the first disorder of mitochondrial fatty acid oxidation defects (FAOD) in 1973, more than 20 defects have been identified. Although there are some differences, most FAOD have similar clinical signs, which are mainly due to energy depletion and toxicity of accumulated metabolites. However, some of them have an unusual clinical phenotype or specific clinical signs. This manuscript focuses on what we have learnt so far on the pathophysiology of these disorders, which present with clinical signs that are not typical of categorical FAOD. It also highlights that some disorders have not yet been identified and tries to make assumptions to explain why. It also deals with new treatments under consideration in FAOD, including triheptanoin and similar anaplerotic substrates, ketone body treatments, RNA and gene therapy approaches. Finally, it suggests challenges for the diagnosis of FAOD in the coming years, both for symptomatic patients and for those diagnosed through newborn screening. The ultimate goal would be to identify all the patients born with FAOD and ensure for them the best possible quality of life.


Lipid Metabolism, Inborn Errors , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/therapy , Quality of Life , Oxidation-Reduction , Mitochondria/metabolism , Fatty Acids/metabolism
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(9): 1075-1085, 2023 Sep 10.
Article Zh | MEDLINE | ID: mdl-37643952

OBJECTIVE: To retrospectively analyze the screening results for genetic metabolic diseases among newborns from Changsha in order to determine the prevalence of single diseases and their mutational spectrum. METHODS: 352 449 neonates born from January 2016 to December 2021 in Changsha were subjected to tandem mass spectrometry. Suspected cases were further analyzed by biochemical and genetic testing. RESULTS: Among the 352 449 newborns, 6 170 were positive for the screening, which yielded a positive rate of 1.75%. 5 437 cases were recalled, and 92 were confirmed, with the overall prevalence being 1∶3 831 and positive predictive value of 1.69%. Eighteen genetic metabolic diseases were detected among the 92 children, including 33 amino acid metabolic disorders, among which 20 were phenylalanine hydroxylase deficiency (60.60%). 17 cases had organic acid metabolic disorders, among which 4 were 2-methyl-dehydrogenase deficiency (23.50%). 42 had fatty acid metabolic disorders, among which 27 (64.30%) were primary carnitine deficiency and 12 were short-chain acyl-CoA dehydrogenase deficiency (28.60%). In total 90 genetic variants were identified, with the most common ones including c.51C>G, c.1400C>G, c.760C>T, c.1031A>G and c.1165A>G. CONCLUSION: The common neonatal genetic metabolic diseases in Changsha include primary carnitine deficiency, phenylalanine hydroxylase deficiency and short-chain acyl-CoA dehydrogenase deficiency. The preliminary delineation of mutational spectrum for genetic metabolic diseases in Changsha can facilitate early diagnosis and intervention, so as to improve the quality of newborn population.


Lipid Metabolism, Inborn Errors , Metabolic Diseases , Phenylketonurias , Infant, Newborn , Child , Humans , Retrospective Studies , Metabolic Diseases/diagnosis , Metabolic Diseases/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Phenylketonurias/diagnosis , Phenylketonurias/genetics
14.
Gene ; 879: 147596, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37390873

Sitosterolemia is a rare autosomal recessive hereditary disease caused by loss-of-function genetic mutations in either ATP-binding cassette subfamily G member 5 or member 8 (ABCG5 or ABCG8). Here, we investigate novel variants in ABCG5 and ABCG8 that are associated with the sitosterolemia phenotype. We describe a 32-year-old woman with hypercholesterolemia, tendon and hip xanthomas, autoimmune hemolytic anemia and macrothrombocytopenia from early life, which make us highly suspicious of the possibility of sitosterolemia. A novel homozygous variant in ABCG5 (c.1769C>A, p.S590X) was identified by genomic sequencing. We also examined the lipid profile, especially plant sterols levels, using gas chromatography-mass spectrometry. Functional studies, including western blotting and immunofluorescence staining, showed that the nonsense mutation ABCG5 1769C>A hinders the formation of ABCG5 and ABCG8 heterodimers and the function of transporting sterols. Our study expands the knowledge of variants in sitosterolemia and provides diagnosis and treatment recommendations.


Hypercholesterolemia , Lipid Metabolism, Inborn Errors , Phytosterols , Thrombocytopenia , Female , Humans , Adult , Hypercholesterolemia/genetics , Hypercholesterolemia/complications , Lipoproteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Phytosterols/adverse effects , Phytosterols/genetics , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/diagnosis , Mutation , Thrombocytopenia/genetics
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 787-794, 2023 Jul 10.
Article Zh | MEDLINE | ID: mdl-37368378

OBJECTIVE: To explore the clinical and genetic characteristics of four patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD). METHODS: Four children who had presented at the Children's Hospital Affiliated to Zhengzhou University between August 2019 and August 2021 were selected as the study subjects. Clinical data of the children were collected. The children were subjected to whole exome sequencing (WES). RESULTS: All of the four children were diagnosed with MCADD. Blood amino acid and ester acyl carnitine spectrum test showed that the concentration of octanoyl carnitine (C8) was significantly increased. The main clinical manifestations included poor mental response (3 cases), intermittent diarrhea with abdominal pain (1 case), vomiting (1 case), increased transaminase (3 cases), and metabolic acidosis (2 cases). Five variants were identified by genetic testing, among which c.341A>G (p.Y114C) was unreported previously. Three were missense variants, one was frameshift variant and one was splicing variant. CONCLUSION: The clinical heterogeneity of MCADD is obvious, and the severity of the disease may vary. WES can assist with the diagnosis. Delineation of the clinical symptoms and genetic characteristics of the disease can facilitate early diagnosis and treatment of the disease.


Lipid Metabolism, Inborn Errors , Neonatal Screening , Child , Humans , Acyl-CoA Dehydrogenase/genetics , Carnitine , Genetic Testing , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics
17.
J Pediatr Endocrinol Metab ; 36(5): 505-507, 2023 May 25.
Article En | MEDLINE | ID: mdl-36972207

OBJECTIVES: Hypoparathyroidism (HypoPT) is a rare disorder and non-surgical cases require careful evaluation, since may be due to genetic, autoimmune, or metabolic factors. CASE PRESENTATION: We present a 15-year-old girl with a previous diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency due to G985A homozygous mutation. She was admitted to the emergency department with severe hypocalcaemia and inappropriately normal level of intact parathyroid hormone. Main etiologies of primary HypoPT were excluded, so it was suspected to be related to MCAD deficiency. CONCLUSIONS: The association of fatty acid oxidation disorders and HypoPT has been previously described in the literature, but its link to MCAD deficiency has only been reported once. We present the second case describing the coexistence of both rare diseases. Since HypoPT can be a life-threatening condition, we suggest calcium levels be assessed in these patients on a regular basis. Further research is needed to better understand this complex association.


Hypoparathyroidism , Lipid Metabolism, Inborn Errors , Female , Humans , Adolescent , Acyl-CoA Dehydrogenase , Lipid Metabolism, Inborn Errors/diagnosis , Mutation
18.
Curr Atheroscler Rep ; 25(5): 181-187, 2023 05.
Article En | MEDLINE | ID: mdl-36897412

PURPOSE OF REVIEW: The purpose of this review was to summarize important and updated information on sitosterolemia. Sitosterolemia is an inherited lipid disorder consisting of high levels of plasma plant sterols. This sterol storage condition is caused by biallelic loss-of-function genetic variants in either ABCG5 or ABCG8, leading to increased intestinal absorption and decreased hepatic excretion of plant sterols. Clinically, patients with sitosterolemia usually exhibit xanthomatosis, high levels of plasma cholesterol, and premature atherosclerotic disease, but presentation can be highly heterogeneous. Therefore, recognition of this condition requires a high level of suspicion, with confirmation upon genetic diagnosis or through measurement of plasma phytosterols. Treatment of sitosterolemia with both a plant sterol-restricted diet and the intestinal cholesterol absorption inhibitor ezetimibe can reduce efficiently the levels of plasma plant sterols, consisting in the first-line therapy for this disease. RECENT FINDINGS: Since hypercholesterolemia is often present in individuals with sitosterolemia, it is important to search for genetic variants in ABCG5 and ABCG8 in patients with clinical criteria for familial hypercholesterolemia (FH), but no variants in FH implicated genes. Indeed, recent studies have suggested that genetic variants in ABCG5/ABCG8 can mimic FH, and even when in heterozygosis, they may potentially exacerbate the phenotype of patients with severe dyslipidemia. Sitosterolemia is a genetic lipid disorder characterized by increased circulating levels of plant sterols and clinically manifested by xanthomatosis, hematologic disorders, and early atherosclerosis. Awareness about this condition, a rare, but commonly underdiagnosed and yet treatable cause of premature atherosclerotic disease, is imperative.


Atherosclerosis , Hypercholesterolemia , Hyperlipoproteinemia Type II , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Xanthomatosis , Humans , Hypercholesterolemia/drug therapy , Phytosterols/adverse effects , Phytosterols/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/therapy , Intestinal Diseases/diagnosis , Intestinal Diseases/genetics , Intestinal Diseases/drug therapy , Hyperlipoproteinemia Type II/complications , Cholesterol , Xanthomatosis/etiology , Atherosclerosis/genetics , Atherosclerosis/complications
19.
Neuromuscul Disord ; 33(4): 315-318, 2023 04.
Article En | MEDLINE | ID: mdl-36893607

Early-onset long-chain 3-hydroxyacyl-coenzyme A dehydrogenase (LCHAD) deficiency is a fatty acid ß-oxidation disorder with a poor prognosis. Triheptanoin, an anaplerotic oil with odd-chain fatty acids can improve the disease course. The female patient presented here was diagnosed at the age of 4 months, and treatment was started as fat restriction, frequent feeding, and standard medium-chain triglyceride supplementation. In follow-up, she had frequent rhabdomyolysis episodes (∼8 per year). At the age of six, she had 13 episodes in 6 months, and triheptanoin was started as part of a compassionate use program. Following unrelated hospital stays due to multisystem inflammatory syndrome in children and a bloodstream infection, she had only 3 rhabdomyolysis episodes, and hospitalized days decreased from 73 to 11 during her first year with triheptanoin. Triheptanoin drastically decreased the frequency and severity of rhabdomyolysis, but progression of retinopathy was not altered.


Lipid Metabolism, Inborn Errors , Rhabdomyolysis , Humans , Child , Female , Infant , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Oxidation-Reduction , Triglycerides/therapeutic use , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/drug therapy , Rhabdomyolysis/drug therapy , Coenzyme A
...